FIBERED - significado y definición. Qué es FIBERED
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es FIBERED - definición

MATHEMATICAL KNOT
Fibered link; Neuwirth knot; Neuwirth's knot
  • stevedore knot]] is ''not'' fibered

Fibered      
·adj ·Alt. of Fibred.
Fibred category         
A “SHEAF” OF CATEGORIES OVER A TOPOLOGICAL SPACE (OR, MORE GENERALLY, ANY CATEGORY), WHERE INSTEAD OF EQUALITY WE HAVE NATURAL EQUIVALENCES IN THE DEFINITION OF THE SHEAF AXIOMS
Cartesian morphism; Fibered category; Co-fibred category; Cofibred category; Co-cartesian morphism; Cocartesian morphism; Grothendieck fibration; Op-fibration; Draft:Left fibration between simplicial sets; Cartesian section; Fibered categories
Fibred categories (or fibered categories) are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images (or pull-backs) of objects such as vector bundles can be defined.
Fibered manifold         
MAPPING IN DIFFERENTIAL GEOMETRY
Fibred manifold; Fiber space
In differential geometry, in the category of differentiable manifolds, a fibered manifold is a surjective submersion

Wikipedia

Fibered knot

In knot theory, a branch of mathematics, a knot or link K {\displaystyle K} in the 3-dimensional sphere S 3 {\displaystyle S^{3}} is called fibered or fibred (sometimes Neuwirth knot in older texts, after Lee Neuwirth) if there is a 1-parameter family F t {\displaystyle F_{t}} of Seifert surfaces for K {\displaystyle K} , where the parameter t {\displaystyle t} runs through the points of the unit circle S 1 {\displaystyle S^{1}} , such that if s {\displaystyle s} is not equal to t {\displaystyle t} then the intersection of F s {\displaystyle F_{s}} and F t {\displaystyle F_{t}} is exactly K {\displaystyle K} .